Shape-Link Documentation
Release 0.1.1.post15

Paul Muller

Nov 12, 2021

1 Getting started

1.1
1.2

2 Command-line interface
shape-link 0L

2.1

Installation

2.1.1 run-plugin

2.1.2 run-simulator

3 Writing Plug-ins

4 Information for Developers

Plug-ins. o ..
Testing
Benchmark Testing

4.1
4.2
4.3

4.4
4.5

4.3.1

Adding a new Benchmark for Github Actions

Feature transfer speeds

Using line_profiler (kernprof)

45.1
452

Installing line_profiler

Using line_profiler

5 Code reference

5.1 shapelink.shapelink_plugin
5.2 shapelink.util
5.3 shapelink.shapein_simulator
5.4 shapelink.msg_def
6 Changelog
6.1
6.2
6.3
6.4
6.5
6.6
6.7

version0.2.1
version0.2.0
version0.1.3 oo L.
version0.1.2
version0.1.1
version0.1.0
version0.0.1

7 Indices and tables

Python Module Index

Index

CONTENTS:

W W

AN L L

2

9
.......................... 9
9

Shape-Link Documentation, Release 0.1.1.post15

This is Shape-Link, a Python library and comman-line utility for interfacing with Shape-In, the acquisition software
for RT-DC. This is the documentation of Shape-Link version 0.1.1.post15.

CONTENTS: 1

Shape-Link Documentation, Release 0.1.1.post15

2 CONTENTS:

CHAPTER
ONE

GETTING STARTED

1.1 Installation

To install Shape-Link, use one of the following methods:
e from PyPI: pip install shapelink

e from sources: pip install .

1.2 Citing shapelink

If you use shapelink in a scientific publication, please cite it with:

Philipp Rosendahl, Paul Miiller, Eoghan O’Connell (2021), Shape-Link version X.X.X: Python library for
interfacing with Shape-In [Software]. Available at https://github.com/ZELLMECHANIK-DRESDEN/

shapelink.

https://pypi.python.org/pypi/shapelink
https://github.com/ZellMechanik-Dresden/shapelink
https://github.com/ZELLMECHANIK-DRESDEN/shapelink
https://github.com/ZELLMECHANIK-DRESDEN/shapelink

Shape-Link Documentation, Release 0.1.1.post15

4 Chapter 1. Getting started

CHAPTER
TWO

COMMAND-LINE INTERFACE

Shape-Link comes with a command-line-interface (CLI) for running plugins.

2.1 shape-link

shape-1link [OPTIONS] COMMAND [ARGS]...

2.1.1 run-plugin

Run a Shape-Link plugin file

Example usages:

run a plugin

shape-link run-plugin plugins/slp_rolling_mean.py

run a plugin with a simulator thread (for plugin testing)

shape-1link run-plugin -w data.rtdc -f image,deform slp_rolling_mean.py

shape-link run-plugin [OPTIONS] PATH

Options

-w, --with-simulator <with_simulator>
Run the Shape-In simulator in the background using the RT-DC dataset specified (used for testing).

-f, --features <features>
Comma-separated list of features to send by the Shape-In simulator; Defaults to all innate features. A list of valid
feature names can be found in the dclab docs (Advanced Usage -> Notation). The list of features will be ignored
if any features are specified within the choose_features method of a plugin implementation.

Shape-Link Documentation, Release 0.1.1.post15

Arguments

PATH
Required argument

2.1.2 run-simulator

Run the Shape-In simulator using data from an RT-DC dataset file

Example usage:

shape-1link run-simulator --features image,deform /path/to/data.rtdc

shape-1link run-simulator [OPTIONS] PATH

Options

-f, --features <features>
Comma-separated list of features to send by the Shape-In simulator; Defaults to all innate features. A list of valid
feature names can be found in the dclab docs (Advanced Usage -> Notation). The list of features will be ignored
if any features are specified within the choose_features method of a plugin implementation.

Arguments

PATH
Required argument

6 Chapter 2. Command-line interface

20

21

22

23

24

25

26

27

28

29

CHAPTER
THREE

WRITING PLUG-INS

A Shape-Link plug-in is a Python script with a class derived from shapelink. ShapeLinkPlugin and some additional
meta data. Let’s have alook at this example plugin which prints the rolling mean of a few scalar features to stdout:

import shutil
import numpy as np
from shapelink import ShapeLinkPlugin

We use the terminal width to make sure a line doesn't get cluttered
with prints from a previous line.
TERMINAL_WIDTH = shutil.get_terminal_size((80, 20))[0]

class RollingMeansPlugin(ShapeLinkPlugin):
"""Displays a rolling mean of a few scalar features
def __init__(self, *args, **kwargs):
super (RollingMeansPlugin, self).__init__(*args, **kwargs)
self.window_size = 100
self.scalar_data = {}

mirn

def after_register(self):
print(" Preparing for transmission™)
for feat in self.reg_features.scalars:
self.scalar_data[feat] = np.zeros(self.window_size) * np.nan

def after_transmission(self):
print("\n End of transmission\n")

def choose_features(self):
return list()

def handle_event(self, event_data):

Handle a new event'"""

window_index = event_data.id % self.window_size

for ii, feat in enumerate(self.reg_features.scalars):
self.scalar_data[feat] [window_index] = event_data.scalars[ii]

print the first three features to stdout

msgs = [" Rolling means: "]

num_prints = min(3, len(self.reg_features.scalars))

e

(continues on next page)

https://dclab.readthedocs.io/en/stable/sec_av_notation.html#sec-features-scalar

38

40

41

42

43

44

45

46

47

48

49

51

52

53

54

Shape-Link Documentation, Release 0.1.1.post15

(continued from previous page)

for ii in range(num_prints):
feat = self.reg_features.scalars[ii]
msgs.append("{}: ".format(feat,
np.mean(self.scalar_data[feat])))

line = " ".join(msgs)
if len(line) < TERMINAL_WIDTH:
line += " " * (TERMINAL_WIDTH - len(line))

print(line, end="\r", flush=True)

return False

info = {
"class": RollingMeansPlugin,
"description": "Display the rolling mean of a few scalar features",
"name": "Rolling Means",
"version": "0.1.1",
}

The main action happens in the handle_event function. Your plugin must implement both this function and the
choose_features function, which can be used to specify three lists of features (scalar, traces, images). The Verify
Aspect Ratio plugin shows how to use the choose_features function. The two functions after_register and
after_transmission can be used to set things up (e.g. creation of an additional output file) or to tear things down
(e.g. closing that file). Use the __init__ function for defining additional class properties. The info dictionary is
required so that the plugin can be run via the Command-line interface.

8 Chapter 3. Writing Plug-ins

CHAPTER
FOUR

INFORMATION FOR DEVELOPERS

4.1 Plug-ins

You may need to install extra dependencies for some plug-ins, such as the autofocus plugin.

pip install -r tests/requirements.txt

To write plug-ins, see the Writing Plug-ins section. To run plugins, see the Command-line interface section.

4.2 Testing

Running tests

pytest tests

If you don’t wish to run the benchmarking tests (which can take some time) use

pytest tests --ignore=tests/benchmarking_tests

4.3 Benchmark Testing

For more information on benchmarking, see pytest-benchmark.readthedocs.io. One can run the benchmarking tests
locally with

pip install -r tests/benchmarking_tests/requirements.txt
pytest tests/benchmarking_tests

To create a local benchmark file (with which you can compare further tests), use

pytest tests/benchmarking_tests --benchmark-save="NAME"

where “NAME” should be similar to “user_date_otherinfo” for tracking purposes, e.g.,
“eoghan_190321_WINpy38.json”. Note that a counter is appended as a prefix in the saved file, e.g.,
“0001_eoghan_190321_WINpy38.json”

Then, when you need to make sure new changes aren’t regressing Shape-Link, use

pytest tests/benchmarking_tests --benchmark-compare="*/0001_eoghan_21-03-19_WINpy38" --
—benchmark-compare-fail=median:5%

https://pytest-benchmark.readthedocs.io/en/stable/

Shape-Link Documentation, Release 0.1.1.post15

4.3.1 Feature transfer speeds

You can output plots that compare benchmark tests. They show how long each feature transfer takes in milliseconds.
This is helpful for understanding how fast each feature can be transferred during acquisition.

Note: These transfer values include the initial time taken for the server and client to connect. Therefore, the plots
overestimate the transfer values. To get a more accurate transfer value, use line_profiler (kernprof).

python tests\benchmarking_tests\benchmark_utils.py

60 0001 _baseline.json

0002_baseline_bal.json
0003_baseline_cst.json
0004 _baseline_HP.json

(%2
o

B
o

Transfer Speed per hit (ms)

=
o

These plots will be saved locally in the same directory.

4.4 Adding a new Benchmark for Github Actions

Shape-Link uses continuous integration with GitHub Actions. The benchmarking tests are run under the “Benchmark
with pytest-benchmark” step. Any push or pull requests will trigger this step. To add a new benchmark file for GitHub
Actions, follow the steps below:

Note: GitHub Actions currently builds a matrix of OS and Python versions. Therefore, minor warnings will appear
stating that the OS or Python versions don’t match the current benchmark comparison files. You can ignore this warning.
We recommend using the output from the Ubuntu-py3.7 build to create the new benchmark file, as it is the slowest.

1. Push your changes. Then go to the GitHub Actions build tab on GitHub. If the benchmarking tests passed, open
the “Benchmark with pytest-benchmark” output.

10 Chapter 4. Information for Developers

https://github.com/ZELLMECHANIK-DRESDEN/shapelink/blob/main/.github/workflows/check.yml
https://github.com/ZELLMECHANIK-DRESDEN/shapelink/blob/main/.github/workflows/check.yml

Shape-Link Documentation, Release 0.1.1.post15

2. Under the “===== passed =====""log, copy the contents of the output.json file. Do not copy the ZMQ errors.
Paste in a new .json file in your local repo in the ./.benchmarks_github_actions folder. This file should be named
similar to: ActionsBenchmark_21-03-19_UBUNTUpy38.json, where the date should change (yy-mm-dd).

3. Open the ./github/workflows/checks.yml file and replace the name of the —benchmark-
compare="actions_benchmarks/ActionsBenchmark_190321_ubuntu_py38” to the name of your file.

4. Commit and push your changes. Now the github actions workflow will compare its live benchmark run to the
new file you just created.

4.5 Using line_profiler (kernprof)

The above benchmarking tests are good but not perfect estimations of feature transfer speed. They have a flaw: the
initial time taken to connect the server and client is included in the transfer speed value. This initial time is sometimes
a substantial (~33%) part of the overall time.

line_profiler, formally kernprof, is a package that tests the speed of excecution of each line of code in your program.
You just need to install line_profiler and decorate the relevant functions with the @profile decorator.

4.5.1 Installing line_profiler

See installation details on the official pyutils repository. First try to install with pip:

pip install line_profiler

If you are using windows and pip install line_profiler does not work, use one of these pre-built wheels. Once
you have downloaded the correct wheel for your computer architecture, you can install the wheel with pip:

pip install path\to\the\wheel

4.5.2 Using line_profiler

The official pyutils repository has a short guide. Place @profile above the function you wish to profile. Then, run the
following in terminal:

kernprof -1 -v path/to/file.py

4.5. Using line_profiler (kernprof) 11

https://github.com/pyutils/line_profiler#installation
https://www.lfd.uci.edu/~gohlke/pythonlibs/#line_profiler
https://github.com/pyutils/line_profiler#line_profiler

Shape-Link Documentation, Release 0.1.1.post15

12 Chapter 4. Information for Developers

CHAPTER
FIVE

CODE REFERENCE

5.1 shapelink.shapelink_plugin

Receive data in real-time from a Shape-In instance via zmq
class shapelink.shapelink_plugin.EventData

class shapelink.shapelink_plugin.ShapeLinkPlugin (bind_to='tcp.://*:6666', random_port=False,
verbose=Fualse)
Shape-Link plug-in meta class

Parameters
* bind_to (str) — IP and port to bind to (where Shape-In runs)

e random_port (bool) — If set to True, ZMQ will use its socket.bind_to_random_port
method. This will override only the port number of the bind_to ShapeLinkPlugin argument.

» verbose (bool) — Set to True to see additional debugging information.

after_register()
Called after registration with Shape-In is complete

after_transmission()
Called after Shape-In ends data transmission

abstract choose_features()
Abstract method to be overridden by plugins implementations.

Notes

When features are chosen by a plugin implementation, only those chosen features will be transferred be-
tween Shapeln and the plugin. This has the effect of ignoring any features specified by the user in the
—features (-f) option of the command line interface.

abstract handle_event (event_data: shapelink.shapelink_plugin.EventData) — bool
Abstract method to be overridden by plugins implementations

handle_messages()
Handle messages from Shape-In

Please don’t override this function. Use ShapeLinkPlugin.handle_event () for your customized plug-
ins.

run_EOT_message (send_stream)

run_event_message (r, rcv_stream)

13

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Shape-Link Documentation, Release 0.1.1.post15

run_features_request_message (send_stream)
Called before registration. The user can specify features for Shape-In to send. This limits the data being
transferred. This can be useful for plugins that require only specific features.

feats is a list of three lists. The sublists are sc, tr, and im

run_register_message (rcv_stream, send_stream)

5.2 shapelink.util

Utility functions

These functions replicate QDataStreams behavior in C++. In PySide2 QDataStream does not accept array type data.
In C++ an array is serialized by writing: 1) Uint32 number of elements 2) type array elements

more significant bytes are written first. (big-endian)

if numpy “to_bytes” is used the native little-endian format appears

shapelink.util.qgstream_read_array (stream: PySide2.QtCore.QDataStream, datatype: numpy.dtype) —
numpy.array
Read array data from a stream with a specified type

shapelink.util.qgstream_write_array (stream: PySide2.QtCore.QDataStream, array: numpy.array) — int
Write array data to a stream with a specified type :param stream: :param array: :return:

5.3 shapelink.shapein_simulator

Simulate a Shape-In instance

The communication is based on a simple REQ REP pattern all methods return when the transmission was acknowledged
by the peer.

class shapelink.shapein_simulator.ShapeInSimulator (destination="tcp://localhost:6666',
verbose=False)

register_parameters(scalar_reg_features=None, vector_reg_features=None, image_reg_features=None,
image_shape=None, settings_names=None, settings_values=None)
Register parameters that are sent to other processes

send_end_of_transmission()
Send end of transmission packet

send_event (event_id: int, scalar_values: numpy.array, vector_values: List[numpy.array], image_values:
List[numpy.array]) — bool
Send a single event to the other process

send_request_for_features()

shapelink.shapein_simulator.start_simulator (path, features=None, destination="tcp.//localhost:6666',
verbose=1)
Run a Shape-In simulator using data from an RT-DC dataset

Parameters

» path (str) - File path to a .rtdc file

14 Chapter 5. Code reference

https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Shape-Link Documentation, Release 0.1.1.post15

» features (1ist, default None)— A list of RT-DC features e.g., [“image”, “circ”, “de-
form”]

» destination (str) — The socket to which the ShapelnSimulator will connect. By default
it is set to “tcp://localhost:6666”. These are the protocol, host and port in the form “proto-
col://host:port”.

» verbose (int) — Prints extra information during the transfer process, such as simulator
speed. Increment to increase verbosity.

See also:

shapelink.cli.run_simulator

5.4 shapelink.msg_def

Definitions for message ids (numeric)

5.4. shapelink.msg_def

15

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
tcp://localhost:6666
https://docs.python.org/3/library/functions.html#int

Shape-Link Documentation, Release 0.1.1.post15

16 Chapter 5. Code reference

CHAPTER
SIX

CHANGELOG

List of changes in-between Shape-Link releases.

6.1

version 0.2.1

test: tests for sorting, plugin for sorting, Emod test dataset

test: tests for autofocus, plugin for autofocus

test: speed tests and benchmarking for features, new benchmarking tools and docs guide

test: added image and scalar choose feature tests, verbose tests

fix: contour shape is now correctly reshaped by the plugin. The image features are now not repeatedly reshaped.
docs: added how-to guide for local and remote benchmark tests

test: added first benchmark test

test: allow Plugin to bind to random port, fixes ZMQ Address Error

ref: reorganised message definitions into a dict

test: added tests for message definitions and EventData

enh: The user can now provide a single list of features in a plugin. The feature names are mapped to the correct
scalar, trace, or image list required for data transfer. Now handles trace information.

test: updated and expanded tests for choosing features. Added tests for the mapping of features.

version 0.2.0

feat: allow user plugins to specify a list of RT-DC features. This stops unnecessary transfer of data. This will
also over-ride the -f command line interface option (#1, #4)

test: add a test function for the ShapeLinkPlugin.choose_features method, add a plugin example for choosing
features. Use pytest instead of deprecated setup.py test.

ref: clean up of the ShapeLinkPlugin.handle_messages method (#6)

docs: add several lines in sec_plugins for slp_verify_aspect_ratio plugin

17

https://github.com/ZELLMECHANIK-DRESDEN/shapelink/issues/6

Shape-Link Documentation, Release 0.1.1.post15

6.3 version 0.1.3

* enh: transfer mask images as binary (#3)

6.4 version 0.1.2

* fix: Running a plugin with the CLI did not work when run without —with-simulator option

* ref: write stream data using QByteArray which significantly improves the event rate (#2)

6.5 version 0.1.1

* docs: add section for writing plugins

6.6 version 0.1.0

* feat: rudimentary command-line interface for running plugins

6.7 version 0.0.1

e initial release

18

Chapter 6. Changelog

https://github.com/ZELLMECHANIK-DRESDEN/shapelink/issues/3
https://github.com/ZELLMECHANIK-DRESDEN/shapelink/issues/2

CHAPTER
SEVEN

INDICES AND TABLES

* genindex
* modindex

¢ search

19

Shape-Link Documentation, Release 0.1.1.post15

20 Chapter 7. Indices and tables

S

shapelink.msg_def, 15
shapelink.shapein_simulator, 14
shapelink.shapelink_plugin, 13
shapelink.util, 14

PYTHON MODULE INDEX

21

Shape-Link Documentation, Release 0.1.1.post15

22 Python Module Index

INDEX

SymbO|S shapelink.shapein_simulator, 14
shapelink.shapelink_plugin, 13
shapelink.util, 14

--features <features>
shape-link-run-plugin command line

option, 5 P
shape-link-run-simulator command line
option, 6 PATH
--with-simulator <with_simulator> shape-link-run-plugin command line
shape-link-run-plugin command line option, 6
option, 5 shape-link-run-simulator command line
-f option, 6
shape-link-run-plugin command line
option, 5 Q
shape-link-run-simulator command line gstream_read_array () (in module shapelink.util), 14
option, 6 gstream_write_array() (in module shapelink.util), 14
-W
shape-link-run-plugin command line R
option, 5 register_parameters()
(shapelink.shapein_simulator.ShapelnSimulator
A method), 14
after_register() (shapelink.shapelink_plugin.ShapeLinkBhugiQT_message () (shapelink.shapelink_plugin.ShapeLinkPlugin
method), 13 method), 13
after_transmission() run_event_message()
(shapelink.shapelink_plugin.ShapeLinkPlugin (shapelink.shapelink_plugin.ShapeLinkPlugin
method), 13 method), 13
run_features_request_message()
C (shapelink.shapelink_plugin.ShapeLinkPlugin
choose_features() (shapelink.shapelink_plugin.ShapeLinkPlugin method), 13
method), 13 run_register_message()
(shapelink.shapelink_plugin.ShapeLinkPlugin
E method), 14
EventData (class in shapelink.shapelink_plugin), 13 S
H send_end_of_transmission()
handle_event () (shapelink.shapelink_plugin.ShapeLinkPlugin (shapelink.shapein_simulator.ShapelnSimulator
method), 13 method), 14 o ,
handle_messages () (shapelink.shapelink _plugin.ShapeLir%ElBFugelX ent () (shapelink.shapein_simulator.ShapelnSimulator
method), 13 method), 14
send_request_for_features()
M (shapelink.shapein_simulator.ShapelnSimulator
method), 14

module

. shape-link-run-plugin command line option
shapelink.msg_def, 15

--features <features>, 5

23

Shape-Link Documentation, Release 0.1.1.post15

--with-simulator <with_simulator>, 5
-£5
-w, 5
PATH, 6
shape-link-run-simulator command line
option
--features <features>, 6
-£,6
PATH, 6
ShapeInSimulator (class in
shapelink.shapein_simulator), 14
shapelink.msg_def
module, 15
shapelink.shapein_simulator
module, 14
shapelink.shapelink_plugin
module, 13
shapelink.util
module, 14
ShapeLinkPlugin (class in
shapelink.shapelink_plugin), 13
start_simulator() (in module
shapelink.shapein_simulator), 14

24

Index

	Getting started
	Installation
	Citing shapelink

	Command-line interface
	shape-link
	run-plugin
	run-simulator

	Writing Plug-ins
	Information for Developers
	Plug-ins
	Testing
	Benchmark Testing
	Feature transfer speeds

	Adding a new Benchmark for Github Actions
	Using line_profiler (kernprof)
	Installing line_profiler
	Using line_profiler

	Code reference
	shapelink.shapelink_plugin
	shapelink.util
	shapelink.shapein_simulator
	shapelink.msg_def

	Changelog
	version 0.2.1
	version 0.2.0
	version 0.1.3
	version 0.1.2
	version 0.1.1
	version 0.1.0
	version 0.0.1

	Indices and tables
	Python Module Index
	Index

